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In this paper we report our results on transient eddy current calculations. A typical 
situation describes a two-dimensional transverse magnetic field incident on an infinitely long 
conductor. The conductor is assumed to be a good conductor but not a perfect one. 
Electromagnetic wave scattering and field penetration occur in this situation. The resulting 
problem is an initial boundary-value interface problem with the boundary of the conductor 
being the interface. A potential function is defined to model the situation in the time domain, 
Finite-difference time-domain (FD-TD) techniques are used to march the potential function 
explicitly in time. Treatment of low-frequency radiation condition is given special considera- 
tion. Results are validated with approximate analytic solutions. c 1990 Academic Press, Inc 

1. INTRODUCTION 

Eddy current calculation is an important subject in classical electrodynamics. 
Eddy currents are induced in a conductor, when an electromagnetic field is incident 
upon it. Therefore, the phenomena of wave propagation, scattering, and penetra- 
tion are integrated in eddy current problems. Usually these result in flows of 
currents in a region near the boundary. A common way of treating these problems, 
in particular, the induced currents, relies on estimating an appropriate skin depth 
for the conductor. Once the skin depth is determined, the associated fields are 
obtained through an equivalence principle by imposing a boundary condition on 
the region of current formulation. Estimation of the skin depth, as given in a later 
section, is based on the field penetration into an infinite planar slab. In high- 
frequency situations, the skin depths are very small. Compared to the skin depth, 
the boundary of the conductor can be reasonably approximated by an infinite 
plane. In low-frequency cases, if the conductor is small and happens to have a 
geometry other than that of a planar slab, the procedure mentioned above will not 
work well. Moreover, the incident waves need not be restricted to time-harmonic 
waves, in general. Pulse sources and surge waves which come from thunder or 
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circuit breakers arise in practice. Therefore, one must have a procedure which can 
capture the transient behavior of eddy currents. 

Along this line, an effort was begun in [ 11, where a two-dimensional eddy 
current problem was considered in the frequency domain. The boundary integral 
equation procedures were established in this work. It presented some possibilities 
for further improvements and the feasibility of solving this class of problems in 
three dimensions. The work in [2] dealt with the continuation of [l] in conjunc- 
tion with the finite element methods. Unfortunately, only the theoretical details 
were available. Moreover, the treatment for a three-dimensional problem was 
restricted to the time-harmonic field. It was established in [3, 41 that the finite 
difference methods are effective even for the frequency-domain problems. Our goal 
is to use the finite difference methods to solve these problems, in particular, the 
two-dimensional problems, in the time domain. 

The finite-difference time-domain (FD-TD) techniques were first applied, in 1966 
[S], to solve the two-dimensional electromagnetic scattering problems. In this 
work, the time-marching methods for solving Maxwell’s equations were proposed. 
Since then, a large amount of work has been done for the problems associated with 
Maxwell’s equations in the time domain. An example was given in [6], which 
concentrated on the penetration through an aperture into complex geometries. As 
mentioned, electromagnetic penetration problems were difficult to solve through 
many analytical and numerical methods. The main difficulty of the FD-TD lied in 
obtaining the appropriate absorbing boundary conditions exterior to the obstacle. 
Without these conditions, there would be considerable nonphysical reflections 
coming from the boundary into the domain of interest. In [7-91, many efforts were 
made to overcome this difficulty. Following the idea of [lo], [7] proposed the 
second-order boundary conditions for the vector-field codes. References [8,9] 
applied these conditions to obtain the highly accurate near and far field results for 
both 2D and 3D targets, even with the grid truncations pushed as close as 10 space 
cells away from the target. However, the boundary conditions in [7] used the 
high-frequency approximations. These are not applicable here, since the eddy 
current calculations are inherently the low-frequency problems. In this paper, we 
present our approach to overcome this difficulty. 

Most of the previous work, in the area of electromagnetic wave radiation and 
scattering, concentrated on using the vector-field codes. In general, four first-order 
Maxwell’s equations must be solved. However, by defining potential functions in 
terms of the field vectors, it is possible to transform the four first-order field 
equations into two second-order potential equations [ 111. For the two-dimensional 
problem we consider here, only one potential function is needed. Thus, with the 
time-stepping of potentials, the requirement for computer storage can be lowered 
and the procedures of calculation can be simplified. In this paper we report the 
feasibility of this idea. Since the paper deals with potentials, the uniqueness of the 
solution is important. We prove this for our numerical model in Appendix A. 

Compared to literature, the results we report here have the following distinctive 
features: 
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1. A low-frequency radiation boundary condition (RBC). 
2. Time-stepping of potentials rather than vector field components. 
3. An application to very low frequency wave penetrating into conducting 

structures. 

2. FORMULATION OF THE PROBLEM 

Let Jz be the cross-section region, in the x-y plane, of a conducting cylinder with 
a finite conductivity cm, a permeability pL,, and a permittivity E,. The generators 
of the cylinder are parallel to the z-axis. The ambient medium is the air with a 
permeability pL, and a permittivity a,. The conductivity of the air is neglected 
because it does not play a major role in this type of calculations. If desired, it 
could be incorporated into the model, in which case the procedure we discuss 

(a) 

F. D. : Forward Difference 

B. D. : BackwardDifference 

N. : No Effect 

II F. D. (x) 

B. D. (Y) 

I N. (4 

i B. D. (y) 

FIG. 1. (a) Typical situation of the problem. (b) Coordinates of the computational domain. 
(c) Implementation of the radiation condition. 
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would still be valid. The incident field has the form: Ei = Ei(x, y, t)k, and H, = 
Hil(x, y, t)i + HiZ(x, y, t)j. A typical situation is depicted in Fig. 1 (a). The electric 
field is parallel to the axis of the cylinder. The magnetic field is transverse (TM) and 
is in the x-y plane. For simplicity, we assume that all material properties are 
homogeneous, isotropic, and frequency-independent. Writing Maxwell’s equations, 
one obtains two sets of equations that are valid outside and inside the conductor, 
respectively. 

In Q, (air) 

f!gl+C!LQ), 
ay 

dE. aE. 
5’-zJ=% 

dH, aH, aE ----=c - 
ax ay a at’ 

In Sz (conductor) 

dE. aE, 
_yl-zJ=-Pm 

(1) 

(2) 

(3) 

aH, dH, aE 
---==,,,E+E,-. ax ay at (6) 

The first term on the right side of (6) is the conduction current. The second term 
is the displacement current. In addition, the following conditions are needed to 
make the problem well-posed. On r (boundary of Q), the tangential components 
of E and H are continuous, i.e., no surface current density is assumed. At infinity, 
the scattered E and H both decay to zero (radiation condition). 

The zero divergence and two-dimensionality of H in both regions suggest 
the existence of a scalar function Y such that H, = a!P/ay and H, = -a!Pfax. 
Substituting these in Eq. (2) and (5), we see that E= -p aY/at. The function PYk 
is identified as the magnetic vector potential. In turn, using this scalar function, the 
dimensionless problem can be written as follows: Details of the derivation of the 
dimensionless form are available in [12]. The governing equations are 

a9 a9 2 

Tg+~=W2L’p,e,$ 
ay 

a2y a9 
J-g+y=cl,L’p,a, 

a2y 
ay 

g+ dL2p,e, F in 0, 

(7) 

(8) 
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where o is the angular velocity of the incident wave and L is a length for scaling, 
which is on the order of the scatterer’s radius. The interface conditions (on r) are 
Y ~ = pL, Y + and a Y -j&r = i?!P +/an, where the minus sign represents the exterior 
field, the plus sign represents the interior field, and pL, is the relative permeability 
of the conductor. The initial conditions are Y(x, y, 0) = Y&x, y, 0) and 
aY(x, y, O)/at = aYin&, y, o)/at, where Yi,, represents the incident wave. Sommer- 
feld’s radiation condition is 

lim r112 %+ka% =o, 
r-XJ ( > 

where ul, represents the scattered wave, k, = OL &, and r is the distance from 
the radiation boundary to the scattering center. 

The model presented above is an interface problem with r being the interface. 
This model is also applicable to the calculation of wave scattering by lossy 
dielectrics and the nondestructive evaluation (NDE) of various kinds of composite 
materials. In the NDE of composite materials, 11, and E, are no longer constants. 
Rather, they are functions of space. The frequency of the incident wave may range 
from low to microwave frequency. In this paper, the low-frequency eddy current 
problem is considered. The difficulties of the problem are explained as follows. For 
instance, if we consider a 60 Hz incident field and a conductor with a diameter of 
0.3141593 m, the parameters that appear in Eq. (7) and (8) have the values: k,= 
WL &= 2.514987 x 10-7, k:, = WL 6 = 2.514987 x 10-7, 1; = L ,/ii 
= 26.55045. Here we have used: pa = p,,, = 1.256637 x 10P6, E, = E, = 8.854 x 10-12, 
orn = 3.72 x 107, and L = 0.2 in the MKS unit system. Thus, reconsidering Eq. (7), 
we see that it behaves like Laplace’s equation, while Eq. (8) behaves like a 
parabolic equation. These observations were made in [ 131. This only yields an 
approximation to the model given in Eq. (7) and (8). We believe that even though 
the value of k, is extremely small, the problem is still governed by a wave 
phenomenon. This is further justified by the results we present later. Thus, we do 
not approximate the physical model, but rather present the procedures to solve the 
problem. This yields several difficulties, particularly in terms of computation. Our 
treatment is presented in the coming sections. 

Retaining the wave nature in the exterior region, we further scale the problem for 
the purpose of treating boundary conditions. We scale the time by k,. As a result, 
the governing equations take the form 

in R,, (10) 

(11) 
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where 
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~L2&?l oi, Ii= k and k;= 
lI02L*p,&, 

u 
k2 . 

(I 

The radiation condition takes the form 

(12) 

The interface conditions and the initial conditions remain the same. 

3. RADIATION CONDITION 

The radiation condition (12) is difficult to implement numerically. It must be 
approximated in a suitable way before it is imposed on an artificial boundary. For 
the waves with moderate to high frequencies, the radiation boundary conditions are 
well known. The procedure is to write the far-field scattered wave in the form: 

This expression follows from [14]. From this, it is easily verified that YS satisfies 

(14) 

This is the first-order radiation condition proposed in [lo]. Moreover, in [ 151 the 
authors obtained a family of radiation conditions following the ideas of [14, 163. 
The first-order radiation conditions of [15, lo] are the same. Their higher-order 
conditions differ from each other. The radiation boundary of (14) must be at least 
one wavelength away from the scattering center. This is suitable for the problems 
involving high-frequency waves. However, for low-frequency waves, Eq. (14) does 
not provide satisfactory solutions in a reasonable computational domain. This is 
due to the fact that the wavelengths are much longer than the size of the scatterer. 
This makes (14) impractical for the numerical implementation in low-frequency 
cases. Thus, we present an alternate formulation for the low-frequency situations. 

3.1. Approximation for Scattered Waves 

The wave equation in the exterior region is: V*Y= a*!PjYldt’, where V* is the 
Laplacian operator. An incident wave, which propagates in the x direction, has the 
following form: Yj = f(k,(x- t)). As suggested in [13], the low-frequency wave 
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equations behave close to Laplace’s equation. The solution of Laplace’s equation 
has the following form: 

o; a,(@ u=a+fllnr+ C 7. 
i=, r 

Since Laplace’s equation has no characteristics of wave propagation, this 
approximation explains only the field distribution in space. To include the wave 
phenomena, we suggest that a term is incorporated to express the scattered waves 
as follows: 

YA= 
c 

cr+blnr+ C O” * f(k,(r-t)). 
i=l r 1 (16) 

Neglecting the variation in the 8 direction, the scattered waves must satisfy the 
following equation: 

la dY’, 

( 1 

a2v. 
-- r% =$. 
r ar 

(17) 

If the first two terms in (16) are used for Yy,, i.e., Y’, = (a + p In r) f(k,(r - t)), we 
obtain 

ia aul, 
-- r-z r ar ( > 

“,i? - k@(a + 2f+ B in r) f’[k,(r _ t),. (18) 

For low frequency waves, k, ~0. f’[k,(r - t)] is usually not too large. In the 
exterior region, the right-hand side of (18) is approximately 0. Therefore, on a 
boundary where the 6 dependence is negligible, YS = (a + /I In r) f(k,(r - t)) is an 
approximate solution for the scattered waves, with an accuracy on the order of k,. 

3.2. Derivation of Boundary Condition 

From (16), YX is written in the following form: 

y]f(k.(r-t))+O(f). 

Taking derivatives, we have 

%=[ $-%$I f(k,(r-t)) 

a,(e) a+plnr+- 
r 1 k,f’(k,(r-t))+O 

a,(e) a+/?lnr+- 
r 1 

(19) 

(21) 
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When both derivatives are added together, 

aft aul, P ,y+,,=yf(kJ-t))+O 5 . 
0 

f(k,(v- t)) is related to lu, in the following way: 

(22) 

(23) 

Substituting (23) into (22), we have 

ayy, atq 
ar+at= 

P 
r(ci +/I In r) (24) 

Therefore, the low-frequency radiation boundary condition is obtained as 

(25) 

where 

A(r)=$( -a+;lnr). (26) 

If one approximates Ys with (a + B In r) f(kJr - t)), the radiation boundary condi- 
tion is 

avl, aul, 
z+x+A(r)Ys=O, (27) 

with a truncation error on the order of l/r’. 

3.3. Boundary Condition for Time-Harmonic Waves 

Normally, the waves are cylindrically expanding in the far field, i.e., large k,r. In 
eddy current situations, k, = 0( 10P7). In order to reach the far field, one must 
consider a distance r > 10’. This makes the computation impossible. What is 
presented here is a heuristic idea that contains two observations. One is that for 
low-frequency waves, even in the near field the waves can be cylindrically 
symmetric, e.g., see Fig. 9. Thus, one might neglect the angular dependence of the 
scattered wave on the artificial boundary. The other one is that k,r is also small. 
With a conducting scatterer, the relation: Re(A,e”O’) xcY,(k,r) can be shown, 
based on [ 173, to exist on the appropriate near-field (i.e., k,r NN 0) boundaries. Here 
A, is the complex phasor of Ysu,, i.e., Re(A,) = Y$. Re is to take the real part of its 
argument, c is a constant, and Y,, is the Bessel function of the second kind and of 
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order zero. Since k,r ~0, using the small-argument approximation of Bessel’s 
function, we obtain 

Re(/l FeikUr) z: [ 1 y + In 2 + $ In r, (28) 

where y is Euler’s constant. On the other hand, from our previous discussion, the 
scattered waves can be approximated in the following way: A, = (x+/I In r)eikUre-ikcL’. 
Thus 

Re(A,eLku’) = (a + /? In Y) Re(eikU’). (29) 

For k,r z 0, Re(eikUr) = 1. Therefore from Eq. (28) and (29), we obtain the following 
approximations: 

and 

Substituting these in (26), we obtain the radiation boundary condition for low- 
frequency time-harmonic waves, 

(30) 

where 

1 1 r+lnk,-ln2+lnr ’ (31) 

Compared to the radiation conditions in literature, (27) and (30) are classified as 
the first-order conditions. However, they are derived through the assumption of 
small k,r. This near-field feature enables their radiation boundaries to move very 
close to the interface boundary. For example, when a single circular conductor is 
used as the scatterer, (30) can be posed on a boundary which is only two grid 
spacings away from the interface boundary (see Section 5). Also, for low-frequency 
waves, it is easy to verify that A(r) is positive. With (27) and (30) imposed on the 
exterior boundary, the problem becomes well-posed. The proof for the uniqueness 
of the solution is shown in Appendix A. 

The boundary condition (30) contains a frequency-dependent parameter k,. This 
suggests that the radiation condition for low-frequency situations is frequency 
dependent. However, there is some range for the boundary condition to move. 
When k, is very small, probably due to low frequency or small L, the variation of 
A(r) within a small range of frequencies might be negligible. In that case, A(r) for 
the central frequency can be used for the multi-frequency problem. Our recent 
research is concentrated on this aspect. The result will be reported later. For the 
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problems involved with a wide range of frequencies, this procedure calls for 
modifications to the boundary condition (30). From the incident field, it is possible 
to estimate the low-frequency contents of the problem by considering the Fourier 
spectrum. In this case, A(r) as defined in (31) should be obtained for each low- 
frequency component. For frequencies above, the cut off limit, A(r) should be 
replaced by 1/(2r) as noted in Eq. (14). 

4. FINITE DIFFERENCE FORMULATION OF THE PROBLEM 

The radiation conditions in the previous section can be easily integrated into the 
finite difference scheme. The finite difference formulae used in solving this problem 
are summarized below. Note that the spatial differences in both x and y directions 
are chosen to be equal, i.e., Ax = Ay. The superscript ‘7” represents the time coor- 
dinate and the subscripts “j” and “k” represent the grid coordinates in the x and 
y directions, respectively. 

The following central-difference forma is used to discretize equation (10): 

xwj+,,,+ YY:-I,k+ q&+,+ II/;*,-,-4’y;JJ in Q,. (32) 

Similarly, the difference formula is obtained for Eq. (1 1 ), 

y ‘+‘+J”:,-by;;’ J,k , , 

+dy;+l,k+ y;p,,,+ y;,k+,+ y;,kp,-4yj,k) in L?, (33) 

where 

.=,/(l+g,,), b=(l-&,At),/(l+$At), 

c=(i($)‘)/(l+&A*). 

On the radiation boundary, the total wave consists of two components: the incident 
wave Yiui, and the scattered wave Y’,, i.e., Y = ul,,, + Yy,. The radiation condition 
takes care of the scattered wave only. The origin is located at the center of the 
scatterer as shown in Fig. l(b). Using the derivatives in Cartesian coordinates, the 
radiation condition has the following form: 

ay, xcosB+c7Vl,sin0+~+A(r)Y,=0. 
8Y 

(34) 

Finite difference methods usually yield difficulties at the corners of a rectangular 
radiation boundary. These are due to the conflicts of difference formulae at the 
corners. As a result, these corners become the sources of instability. To avoid the 
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corner problems, [IS] proposed a different boundary condition be used for the two 
grid points nearest to the corners. Unfortunately, this procedure yields complica- 
tion. In our experiment, a method using a smooth transition was developed to solve 
the corner problems. The approach is depicted in Fig. l(c). On the left boundary, 
A0 is the central grid point, A, the nearest grid point above &, A e-1 the nearest 
grid point below A,. On the right boundary, B, is the central grid point, B, the 
nearest grid point above B,, and B-i the nearest grid point below B,. On the top 
boundary, C is the central grid point, A2 the nearest grid point to the left of C, and 
B, the nearest grid point to the right of C. On the bottom boundary, C’ is the 
central grid point, A P2 the nearest grid point to the left of C’, and BP, the nearest 
grid point to the right of C’. The scheme is explained as follows. On the boundary 
A, to A,, aY,/ax is implemented by a forward-difference formula and aY,/ay is 
implemented by a backward-difference formula. On the boundary B, to B,, ~!Pu,/i3x 
and a!P,/ay are both implemented by the backward-difference methods. It seems 
that the implementations of a!P,/ax on two boundaries will conflict at the intersec- 
tion grid point C. But, since the term is multiplied by cos 8 and its value is 0 at C, 
the conflict will not take effect and the corner problems are avoided. The following 
difference formulae are used to discretize the radiation condition (34) on the upper 
radiation boundary: 

(K);,:‘=4’V;);,,- scwu,):+l,,- (~v,)j,kl at A,, 
VA:,: ’ = 4’V&,- scws);+,,k-wu,):,kl 

-h[:(‘Y,)f,,-(y,):,,-,l on AI-A,, 

(~U,):,:‘=~(‘Y,)~,,-~C(~V,):,,-(’Y,)f,,-,l at C, 

ws);,Y =d(y’,)t,,-gC(y’,)j,,-(y,):-,,,l 
-h[I(yu,)~,k-(y~):,k~,l on B,-B,, 

wu,);,;‘=w’,);,,- &TcK):,k- (W~,,,l at B,. 

(35) 

(36) 

(37) 

(38) 

(39) 

The condition on the lower boundary is handled by a symmetry to the upper 
boundary. The coefficients d, g, and h are defined as: 

d=l-$A(r), g=cosedf 
AX’ 

h = sin 8 2, 

where A(r) is defined by Eq. (31). Note that in Eq. (35)-(39), the terms with 
coefftcients g and h take care of the derivatives in Eq. (34), and the terms with the 
coefficient d take care of the term of A(r). 

Numerical implementation of the interface conditions needs special attention. In 
Ref. [19], interface conditions are implemented by a cell integration method. Here 
we present a simple way to solve it directly using the finite-difference methods. Our 
approach uses an idea of fictitious fields. This idea was also found in [20] for the 
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Iiiiiii illI 
(b) 

(cl 

FIG. 2. (a) Approximating a curve f with a polygon r’. (b) Grid points near the interface boundary 
when p, # 1. (c) Grid points near the interface boundary when p, = 1. 

vector field code. As suggested in [21], an interface boundary with some extent of 
curvature can be approximated by a stair geometry with its vertices occupying the 
regular grid points. For example, the circle in Fig. 2(a) can be approximated by the 
polygon I”. Then the field computation is classified into two categories: exterior 
(air) and interior (conductor). For the grid points on the boundary, to obtain an 
accurate result, the following are suggested. When the grid separation is much 
larger than the estimated skin depth, the interior wave equation is used. When the 
grid separation is equal to or smaller than the estimated skin depth, the exterior 
wave equation is used. The second interface condition alu -/&I = a!P +/&I can be 
transformed into 

ay- -cose+- ayp sin~=ay+ av 
ax ay 

-cos e+- ax ay 
sin 8, (40) 

where ~9 is the angle between the normal direction and the x-axis. From this condi- 
tion, when the field computation involves a point in the other region, the following 
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local approximations are used: 8Y ~/ax = a!P + lax and a!P -/ay = a!P +/ay. With 
these, when the field computations involves a grid point in the other region, a 
fictitious field at that point can be obtained for computation. For the following 
explanations, the wave equation in the air is assumed for the grid points on the 
boundary. In Fig. 2(b), the field computation at A belongs to the category of the 
air. But a grid point B in the conductor is involved in the difference formula as 
shown below: 

Y ‘,+‘=2Y>-Y>-‘+ 
i > 

2 *((yg)i+ y;+ y;+ y”,-4yy’,), (41) 

where Yg is the fictitious field at B, i.e., the field value at B, if the air covers the 
whole space. From the local approximation to the second interface condition, 
Y$- Y, = Y,-- lu;. Furthermore, from the first interface condition, Y: = 
l/p,. YA. Thus, Yg = YB + (1 - l/pL,) Y,. Substituting into Eq. (41) we obtain 

Y 5+‘=2Yf,- Y’,-‘+ *(Y;+ Yi,.+ u/l,+ Y&(3+ l//~,)yl;). (42) 

Similarly, using the first interface condition, the field at point 1 can be calculated 
from 

Y ;+‘=aY’;-bY’;p’+c(Y~/pr+ Y\/pL,+ Yi+ ‘vi--4Yi), 

where a, b, and c are the same constants as those in Eq. (33). 

(43) 

If the relative permeability p,. of the conductor is 1, approximating the interface 
boundary with a stair geometry becomes unnecessary. When a field computation 
involves a grid point in the other region, the real field value at that point will be 
used directly for calculation because it aproximates the fictitious value. For exam- 
ple, in Fig. 2(c), from the local approximation to the second interface condition, 
(Y;-Y,)/s=(Yc-Y;)/ s, where s is the distance between B and C. From the 
first interface condition, Y; = Y i . Thus Y:= Yy,. As a result, the field at A can 
be obtained from the formula 

Y’ ;+‘=2Y>- Y>-‘+ 2 *(Y;+ Yb+ yi,+ Y’;-4Yy’,). 
( > 

(44) 

Similarly, the field at the grid point 1 can be calculated from the formula 

Y ;+‘=aYi-bYY;~ ‘+c(Y;+ YV;+ Yd+ Y\-44;). (45) 

5. NUMERICAL EXPERIMENTS 

For the following numerical experiments, the incident waves are assumed to be 
the sinusoidal TM plane waves, propagating in the x direction. These waves are 
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incident on the left boundary starting at t = 0. Therefore, the incident component 
of the field at the grid point (j, k) is (lu,,,)i,k = cos[k,(i At -j Ax)]. 

5.1. Experiment 1 

To validate the new radiation condition (30), we have the first numerical 
experiment as follows. The conductor is assumed to be a circular cylinder made of 
aluminium. The grid coordinates with the parameters used are shown in Fig. 3. 
The incident wave has a frequency of 60 Hz. The associated parameters k, = 
2.514987 x lo-‘, If, = 2.802903 x 109, and ki = 1. We used At = 0.09256006 (the real 
time interval is 6.174877 x lo- ‘r s), and Ax = 0.1308997 (the real space separation 
is 2.617994 x lop2 m). With these choices, (At/Ax)2 = 0.4999999 < 0.5. Courant’s 
stability criterion for Eq. (10) is satisfied. Since 1; is very large, the stability 
criterion for (11) is mainly posed on the ki term. Therefore our choices of At and 
Ax also satisfy the stability criterion for (11). The numerical methods presented 
above were implemented in a computer program, running on a SUN 4/260 
workstation. The numerical solution using the low-frequency radiation condition 
(see Fig. 4), was obtained after 67,900 time steps. This is equivalent to 
2.515645 x 10V4 period. The CPU time is about 1.5 h. From the history plot at a 
point (67,34) (see Fig. 7), the solution in the exterior region is found to be in a 
transient state but with a value almost approaching that at the steady state. For 
comparison, the numerical solution using the radiation condition (14) was also 
obtained and is shown in Fig. 5. 

To obtain the analytic solution, we assume the solution of Eq. (10) and (11) 
to be A = R(r) @(f3)e-jkar. Here, A is the complex phasor of Y, i.e., Y= Re(,4). 
Separation of variables on Eq. (10) and (11) yields the analytic forms 

A ~ (r, 8, t) = f in&,, cos(nO)[J,(k,r) + qIHf)(k,r)] ei“a”Le-ikaf, (46) 
II=0 

A + (r, 6, t) = z inEn cos(n0) b,J,(pr) e”~xLeCik~r, (47) 
n=O 

where .I, is the Bessel function of the first kind and order n, Hy’ is the Hankel 
function of the first kind and order n, and xL is the distance from the center of the 
cylinder to the left boundary. so = 1 and E, = 2 for n > 1. Through variable 
separation on (1 1 ), we obtain p = w2L2p,&, + ioL20,pc, N N JK. Using 
the interface conditions, the coefficients a, and b, are determined from the 
equations 

JA’v) + ~,ff?(kA = /4J,(pa), (48) 

k,CJXa) + 4%“)’ bb)l = bnpJ:,b)> (49) 
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(0,60) (120,601 
M K. s. Unit System. 

/.~,,,=p~= 1.256637 x lo+ 

Em=Sa= 8.854 x lo-l2 

CT,= 3.72 x 10’ 

(0,O) . . ..~......_.._.._ _ . . . . . . @ . . . . . .._......_......... (120,O) 

WV3 

L= 0.2 

radius a= 0.1570796 

KA-60) (120,-60) 

FIG. 3. Grid size and important parameters for numerical experiment I 

FIG. 4. Contour plot of the numerical solution in experiment I, using the boundary condition (30). 
The result was obtained after 2.515645 x lo-“ period from the beginning. 
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FIG. 5. Contour plot of the numerical solution in experiment I, using the radiation boundary 
condition (14). The result was obtained after 2.515645 x 10m4 period from the beginning. 

for n = 0, 1, 2, . . . . where a is the radius of the cylinder. The first three coefficients 
in these two equations are calculated to be 

a,= - 1.027247 x lop2 - i9.971206 x lo-* 

a, = -2.004432 x lo-l5 - i2.852592 x lOpI4 

a2 = - 1.817832 x 1O-29 - il.288663 x lo-** 

b,= - 1.106546 x lo-‘+ i8.582522 x lop9 

h,=2.314644x10-‘4+i3.575007x10-‘4 

6, = 3.629113 x IO-*’ - i2.260305 x lo-*‘. 
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FIG. 6. Contour plot of the analytic solution in experiment I. The result was obtained from Eq. (46) 
and (47) by setting k,r =2.515645 x 10m4 x 27~. 

Taking the first three terms in the series, we plot the analytic solution in Fig. 6. 
Comparing this to Fig. 5, we find that the numerical solution using the radiation 
condition (14) has a large numeric error although its field pattern is similar to that 
of the analytic solution. The error comes from the position where the radiation 
condition is applied. This condition requires k,r to be large. But in this experiment, 
k,r is very small (0(10P6)). As a result, the error appeares to be large. On the 
other hand, if we expand the computation domain to get a large k,,,r, the grid size 
will become too large to be implemented on a computer. Therefore the boundary 
condition (30), which is appropriate to the case of small k,r, is needed to solve the 
problem (Fig. 7). 

581/89’2-6 
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(a) 

FIG. 7. History plot at P(67, 34) in numerical experiment I. (a) Plot for the beginning 679 time steps. 
(b) Plot from the beginning through 67,900 time steps. 



TIME-DEPENDENT 2D EDDY CURRENT PROBLEMS 337 

TABLE I 

Comparison of Solutions in Experiment I, in Double Precision Expression 

IRadius Grid I Numerical I Analytic I 
+ I I I I t 

I ( 80, 0) I 0.8035427D-01 I 0.7879715D-01 I 
I 
I ( 74, 14) I 

I I 
0.7969991D-01 I 0.7815606D-01 I 

I 20 
I 
I ( 60, 20) 1 

I I 
0.8028407D-01 I 0.7879725D-01 I 

I I 
I ( 45, 14) I 

I I 
I 0.8197310D-01 I 0.8042111D-01 I 
I 

I ( 40 
I I I 

0.8021339D-01 I 0.7879735D-01 I 
/______,-_---r--"'_/----------------l----------------l 
I I (100, 0) I O.l246082D+OO I O.l227901D+OO / 
I 

I ( 88, 28) I 
I I 

I O.l239659D+OO I O.l221490D+OO I 

I 40 
I 
I ( 60, 40) / 

I I 
O.l245336D+OO I O.l227901D+OO I 

I I I I 
I ( 31, 28) I O.l250927D+OO I O.l232822D+OO I 
I I I I 

O.l244591D+OO I O.l227902D+OO I 

I (120, '0) I O.l503752D+OO 1 O.l485242D+OO 1 

: (102, 42) 1 
I I 

O.l498472D+OO I O.l478831D+OO I 
I I I 

60 I ( 60, 60) i O.l503764D+OO I O.l485243D+OO I 
I 
I ( 17, 42) 1 

I I 
O.l505956D+OO I O.l486387D+OO I 

I I I I 
O.l503784D+OO j O.l485243D+OO 1 

I ( 64, 0) I O.l710767D-13 I 0.2201674D-04 1 
I I I I 
I ( 62, 2) I O.l975745D-18 I -O.l127474D-05 I 

I4 
I I I I 
I ( 60, 4) I O.l719809D-13 I 0.2201422D-04 I 

I I I I 
I I ( 57, 2) I 0.3046863D-14 : O.l069381D-04 I 
I 

i ! 56, 0) I 
I I 

I O.l731365D-13 I 0.2201171D-04 I 

Comparison of Figs. 4 and 6 shows that the numerical solution, using the low- 
frequency radiation condition (30), matches the analytic solution very well in the 
exterior region. Both solutions, numerical and analytic, at the points with r = 4, 20, 
40, 60 and 0 = 0, 71/4, 7t/2, 37r/4, rt are listed in Table 1. From this table, two 
solutions in the exterior region are found in excellent agreement. This proves that 
the new radiation boundary condition (30) works very well for low-frequency 
electromagnetic waves. It is also shown in this table that the fields on the 
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illuminated and the shadowed sides are nearly the same because of the strong 
diffraction of low-frequency waves. The root mean square error for the whole 
computational domain is calculated to be 1.39%. Equations (46) and (47) show 
that the analytic solution is at a sinusoidal steady state. However, the numerical 
solution is in a transient state, i.e., the field is still on its way penetrating into the 
conductor. This explains the difference of the inside field between two solutions. 

5.2. Experiment II 

In this experiment we focus on the accuracy of the solution in the interior region. 
To capture the accurate eddy current phenomenon, a grid separation, which is 

FIG. 8. Contour plot of the numerical result in Experiment II. The result was obtained after one 
period from the beginning. 
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about 4 of the estimated skin depth, is chosen for this experiment. This skin depth 
is defined, in the case of a plane scatterer of infinite depth, as: 

where f is the frequency of the incident wave, and pL, and CT, are the permeability 
and conductivity of the scatterer, respectively. The conductor in this experiment 
is assumed to be a circular cylinder made of graphite with the radius, LI = 
6.544985 x lop2 m, a,=4 x lo4 S/M, pm=pU, and E,=E,. The frequency of the 
incident wave is 6000 Hz. Therefore, the estimated skin depth is 3.248737 x lop2 m. 
The grid size is 25 x 25 with the diameter of the conductor occupying 21 grid points. 

FIG. 9. Contour plot of the analytic solution in Experiment II. The result was obtained from 
Eq. (46) and (47) by setting k,r = 2~. 
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The length L for space scaling is 0.05 m. The associated parameters k, = 
6.287468 x 10d6, 1: = 7534687 x 105, and ki = 1. We used At = 0.09256006 (the real 
time interval is 1.543719 x lo-” s and Ax = 0.1308997 (the real space separation is 
6.544985 x lo-‘m). Figure 8 shows the numerical result after one period. The 
calculation took 10.8 x lo6 time steps (20 min CPU time on a CRAY-XMP-24). 
Compared to the analytic solution in Fig. 9, the numerical result is found to be 
satisfactory. Figure 8 demonstrates a clear eddy current phenomenon, i.e., the field 
distribution inside the conductor is concentrated in a region near the boundary and 
decay rapidly beyond this region. 

In Fig. 10 the time history of the solution at a point P(3,O) inside the conductor 
is shown. Initially, only the left boundary was excited by the incident wave. The 
field values at other locations were all zero. Then, the wave propagates towards the 
interface boundary and penetrates into the conductor. As a result, the field value at 
P(3,O) is attained in a waveform similar to the incident wave, as shown in Fig. 10. 
This is different from the quasi-static field. Quasi-static fields can exhibit the 
sinusoidal time variation but may not be the traveling waves. However, our numeri- 

-3.0 Ia 11 I I , I I I, 1 I,, , I, I, 

0 10 20 30 40 50 60 70 so 90 loo 110 

x100000 T 

FIG. 10. History plot at P(3,0), which is inside the conductor, in experiment II. The plot is from the 
beginning through 10.8 x lo6 time steps, i.e., one period. 
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(a) 

FIG. 11. Contour plots in Experiment II. The unit for each contour line is 0.01. (a) After 5000 time 
steps. (b) After 100,000 time steps. (c) After 200,000 time steps. 

cal results show the fields traveling in the conductor, see Fig. 11. Figure 1 l(a) 
shows the field distribution after 5000 time steps. The visible fields exist within the 
first grid points inside the boundary. Figure 11(b) shows the field distribution after 
100,000 time steps. The visible fields, at this time, have moved forward. Figure 1 l(c) 
shows the field distribution after 200,000 time steps. The visible fields are found to 
move further. Also, the wavefront outside the conductor, e.g., the line !P= 
360( x lo-‘), is found moving. This phenomenon of traveling wave justifies the 
comment we made earlier. Both regions are governed by a wave phenomenon. 
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FIG. 11 -Continued 

5.3. Experiment III 

In this experiment, we reline the grid mesh in Experiment II. The physical condi- 
tions are kept the same, but the grid interval is relined to half that in the previous 
experiment. The grid size is now 49 x 49 with the conductor’s diameter occupying 
41 grid points. The length L used for space scaling is 0.025 m. The associated 
parameters k, = 3.143734 x 10e6, 1: = 3.767344 x 105, and k: = 1. We used 
At =0.09256006 (the real time interval is 7.71859 x lo-‘* s), and Ax=O.1308997 
(the real space separation is 3.272493 x lop3 m). The numerical result for a period 
was obtained after 21.6 x lo6 time steps. Table II shows the comparison of this 
result to that in the previous experiment. No big differences are found between the 
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(cl 

FIG. 1 l-Continued 

two results, showing the stability of the scheme. Figure 12 shows the numerical 
result for the time instant at a quarter period. At this time, the incident magnetic 
field becomes identically zero. However, from Fig. 12, we find that a weak magnetic 
field still exists in the exterior region, At the beginning, the field penetrates from the 
exterior region into the interior region. At the time near a quarter cycle, the interior 
field is so much stronger than the exterior field that it penetrates back to the 
exterior region through the interface conditions. Therefore the maximum value of 
@ occurs inside the conductor at this time. For a general transient signal, the 
problem must be solved in the time domain, where this phenomenon is more under- 
standable, rather than in the frequency domain. 
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FIG. 12. Contour plot of the numerical solution at a quarter period in Experiment III. 

6. CONCLUDING REMARKS 

From our investigation, the following conclusions are reached: 

1. Time-stepping of potential functions, for electromagnetic wave propagation 
and scattering problems, is feasible. 

2. To solve the eddy current problems, a boundary condition (30) which is 
appropriate to the case of small k,r is obtained. Our numerical experiments have 
shown that it works very well. 

3. Calculation of low-frequency penetration fields into a good conductor has 
been successfully achieved. 
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TABLE II 

Comparison of Solutions in Experiments II and III, in Double Precision Expression 

I Experiment II I Experiment III I 
I- t 
/ Position I Field Value I Position / Field Value I 

i ( 0, 12) I 
I I 
I ( 2, 10) I 

i ( 4, 
I 

8) I 
I I 
I ( 6, 6) I 
I I 
I ( 8, 4) I 
I 
I ( 10, 2) / 
I 
I ( 12, 0) I 
I I 
I ( 14, -2) I 
I 
I ( 16, -4) i 
I 
I ( 18, -6) i 

I ( 20, 
I 

-8) I 
I 
I ( 22,-10) I 

: ( 24,-12) ; 

0.6302000D-01 

0.4789700D-01 

0.2942620D-01 

0.7877070D-02 

-0.5976780D-02 

-O.l255920D-01 

-O.l441850D-01 

-O.l256070D-01 

-0.5979730D-02 

0.78;3060D-02 

0.2942230D-01 

0.4789330D-01 

0.6301640D-01 

1 
I ( 0, 24) i 0.6240490D-01 

I 
I ( 4, 20) I 0.4727480D-01 

I 
( 8, 16) I 0.2877390D-01 

I 
( 12, 12) I 0.7390440D-02 

I 
( 16, 8) / -0.6221140D-02 

I 
( 20, 4) 1 -O.l265110D-01 

I 
( 24, 0) I -O.l445360D-01 

I 
( 28, -4) I -O.l265260D-01 

I 
( 32, -8) 1 -0.6224050D-02 

( 36,-12) 1 0.7386450D-02 

( 40,-16) ; 0.2877000D-01 

1 ( 44,-20) ; 0.4727110D-01 
I I 
I ( 48,-24) I 0.6240130D-01 

APPENDIX A: UNIQUENESS OF THE SOLUTION 

The problem considered can be written in the following form: 

Yq,=V2Y” in Q2,, 

k;Y,,+1f,YY,=V2Y in s2, 

yy”+ yin== y on r, 

(51) 

(52) 

(53) 
ays aP= ay 
-Yg+-- an -an on r, (54) 

wx, J’, O), q-7 y, 0) = 0 in Q,, (55) 

WA Y, O), Y,(x, Y, 0) = 0 in 52, (56) 
(US,+ Y;+A(r)Y’=O on r,,. (57) 

Here V* is the Laplacian operator. Subscripts “1,” “tt,” and “r” represent the partial 
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derivatives. Superscripts “s” and “in? represent the scattered wave and the incident 
wave respectively. r, is the radiation boundary and assumed to be a circle here. 
A(r) is defined in Eq. (26) and (31). 

First, assume that the problem has two solutions u,(x, y, I) and u,(x, y, t) and 
4x, Y, r) = u2(x, y, f) - u,(x, Y, f). Then 

ur,=v2v in fiA, (58) 
k;v,,+l;v,=V2v in Q, (59) 

v- =u+ on r, (60) 

aUp au+ -=- 
alI an on r, (61) 

44 Y, 01, &(X7 Y, 0) = 0 in QA, 52, (62) 

u, + v, + A(r)v = 0 on r,. (63) 

We construct a function 

E(f)=;jjQA (v~+VvVv)dQ/,+;jj~ (k;v;+VuVu)dQ, (64) 

where V is the gradient operator and . is the operator for the inner product. 
Taking the derivative of E(t) with respect to t, we obtain 

E’(t) = jjo, (v,v,, + Vu .Vtl,) dQ, + !*I, (kt,v,u,, +Vv .%I,) dQ 

= j-j 
Qa 

(v,V2v+VvV~JdQA+~j” (v,V2v+VuVv,-l~v~)d~ 
R 

= jj” 
Qa 

(V.v,Vv)dQA+[j (Vv,Vv-l;v;)dQ 
R 

= s v,Vv.ndst I v,Vv.nds- 
.TA I- 1.i lf,,v; ds2 

R 

= s v,v, ds - s v,v, ds + 
I-,, I- I vtunds- 

I. ss 
I2 v2 d&i! m , 

0 

(65) 
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Thus we have 

E’(t)+J’/(r)cu,d~= -j ufds-SJ’ l;,ufdQ. 
r<, R 

The right side of the equation above is less than or equal to zero. Then 

(66) 

(67) 

From the initial condition, u(x, y, 0) =O, z),(x, y, 0) =O, and E(0) =O. It follows 
that 

so that 

E(t) d - 5 ! A(r)u2 ds. 
I-, 2 

(68) 

(69) 

From the structure of A(r) (Section 3), A(v) > 0 on r,. As a result, E(t) 6 0. But 
from the definition, E(t) > 0. Thus E(t) = 0. This leads to v,(x, y, t) = 0, i.e., u is 
constant in time. Since u(x, y, 0) = 0, u(x, y, t) = 0 for all time and all space. This 
means u,(x, y, t) = u,(x, y, t). Therefore we conclude that the problem has a unique 
solution. 
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